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The stability of a temperaturesalinity front of finite width in which the density is 
exactly compensated for in the horizontal direction is studied by means of a linear 
theory. It is assumed that salt fingers are responsible for vertical transports of 
salinity and heat. The front is found to be always unstable even if viscosity is present. 
Horizontal intrusions are generated as a result of the instability, and cold/fresh 
water sinks while hot/salty water rises. 

The stability of the front is described by three dimensionless parameters : a frontal 
stability parameter G = [g( 1 - y )  /3ASl6/~;  a2iVo, a stratification parameter 
p = g( 1 - y )  /3&/N2 and a Schmidt number E = v /K , ,  where g is the acceleration due 
to gravity, /3 the salinity contraction coefficient, A S  half of the salinity difference 
across the front, y the density-flux ratio of temperature to salt due to salt fingers, 
N the Brunt-Vaisala frequency corresponding to the basic density stratification, a 
the half-width of the front, the vertical gradient of the basic salinity, K, the eddy 
diffusivity of salt due to salt fingers, and v is either molecular or eddy kinematic 
viscosity. When E is not zero i t  is found that a modified frontal stability parameter 
R defined by R = G/s plays an important role in determining the stability for a fixed 
value of p. In particular, when E is larger than 10, the stability is almost completely 
determined by R if p is specified. 

The dependence of the vertical scale h of the fastest-growing mode on external 
parameters varies according to the value of R for a given value of p. When R is less 
than 40(1 +p)5.4 (for E = 10-3-103) h becomes independent of R and E and is given 
by h = 2.2d/(l +p) ,  where d = g ( l -  y ) P A S / P  is the scale suggested by Ruddick & 
Turner (1979) who performed an experiment on horizontal intrusions across a narrow 
front. When R > 2 x 105(1 +p)4'9, on the other hand, h becomes proportional to dR-f ,  
the scale suggested by Toole & Georgi (1978), who considered the stability of a 
temperaturesalinity front of infinite width. The constant of the proportionality is 
a weakfunctionofEandvariesfrom27t[(2+,u)/4(1 +P)~]-: to2n[2(1 +p+ (1 +p):)]:as 
E goes from zero to infinity. Thus a front can be said to be narrow if R < 40(1 +p)5*4 
and wide if R > 2 x 105(1 +,u)~.~. 

The results of the theory explain those of Ruddick & Turner's experiment (1979) 
reasonably well. 

1. Introduction 
One common characteristic of oceans is that interleaving layers are found where 

there are strong gradients of temperature and salinity in the horizontal direction. The 
possibility of a cooperative instability in which salt fingers drive medium-scale 
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intrusions, which in turn provide a necessary amount of salt flux to maintain salt 
fingers, has been suggested theoretically by Stern (1967). Recent observations in 
oceanic fronts have shown that coldlfresh intrusions sink while warm/salty intrusions 
rise across isopycnals (Horne 1978; Joyce, Zenk & Toole 1978; Gregg & McKenzie 
1979), consistent with Stern’s (1967) prediction. 

These intrusions have also been studied in the laboratory. Thorpe, Hutt & Soulsby 
(1969) and Chen, Briggs & Wirtz (1971) have made laboratory experiments on stably 
stratified salt water heated and cooled through side boundaries. They have found 
alternating layers of cellular motion that extend from one boundary to the other, and 
Chen et al. suggested that the vertical scale of these layers can be scaled by g a A T / q ,  
where g is the acceleration due to gravity, a the thermal-expansion coefficient, AT 
the temperature difference between the heated and the cooled boundaries, and N ,  
the Brunt-Viiisillii frequency for the salt stratification. 

Recently, a laboratory experiment that seems to be more relevant to the case of 
the oceanic front was suggested by Turner (1978) and performed by Ruddick & 
Turner (1979, herinafter referred to as RT). They prepared two fluids, one on either 
side of a vertical barrier, which was located halfway across a rectangular tank. One 
of the fluids was stably stratified with salt and the other with sugar, and both had 
the same constant density stratificati0n.t At a certain instant the barrier was 
carefully withdrawn, and a front across which there existed concentration differences 
of sugar and salt was produced. The concentration differences of sugar and salt 
increased linearly with local depth zf (the downward distance from the free surface).$ 

Although ideally there should be no density difference across the front, a slight 
unbalance of the densities at both sides was inevitable. This produced considerable 
internal gravity waves immediately after the withdrawal of the barrier. These waves, 
however, decayed away within a few minutes. Then intrusions started to develop 
from each side with a typical timescale of a few minutes and penetrated into the 
other fluid. The penetration velocity was nearly proportional to zf (i.e. the local 
concentration difference of sugar). The vertical scale of the intrusion was also 
proportional to zf. According to RT, these features of the intrusions did not depend 
on the initial disturbances, which were produced rather randomly by the withdrawal 
of the barrier. 

Based on an assumption that ‘sugar fingers’ play a dominant role in transporting 
sugar and salt vertically, RT developed an energy argument to derive the possible 
vertical scale H of the intrusions and found that H should be between 
2( 1 - ysu) qp,, A S u / P  and 4( 1 - ysu) qp,, A S J P ,  with pSu the sugar contraction 
coefficient, 2ASu the local concentration difference of sugar, N the BrunGViiisiilii 
frequency for the density stratification, and ysu the ratio of the density flux of salt 
to that of sugar. Since most of the experimental results for H fell in the above 
interval, they concluded that the vertical scale of the intrusion can be scaled by 

Although the energy argument seems to work well in determining the vertical scale 
of the intrusions, it assumes the presence of layered intrusions from the beginning 
and does not require any knowledge of the structure of the intrusions, nor does it 

-Ysu) B S U A 4 l I f l .  

t The diffusivity of salt is about three times m large as that of sugar. Since a salt-sugar system 
is much easier to handle than a heat-salt system, and yet produces analogous features to those 
in a heatsalt system, laboratory experiments on double-diffusive phenomena are often performed 
with a salt-sugar system. 

They performed three additional experiments in which the concentration differences of sugar 
and salt were constant with z, (see $2.1). 



Linear stability of temperature-salinity front 73 

give any information on the structure. Thus it is desirable to develop a theory that 
explains the vertical scale as well as the behaviour of the intrusions, such as the 
growth rate, the flow pattern, and salinity and temperature fields. The fact that the 
development of the intrusions is not influenced by the initial disturbance suggests 
that those intrusions may be generated as a result of an instability. 

Recently, Toole & Georgi (1981, hereinafter referred to as TG) developed a linear 
stability theory similar to Stern’s (1967) theory. They considered a stably stratified 
fluid with a uniform compensating horizontal temperature and salinity gradients 
extending to infinity. Although they tried to apply their results to RT’s experiment, 
the wavelength of the fastest-growing mode did not agree with RT’s vertical scale, 
which suggests that the behaviour of a narrow front such as RT’s is different from 
that of TG’s front (a front of infinite width). This result is expected, since a front 
of finite width has a lengthscale based on the concentration differences across the 
front, but an infinitely wide (as in TG) front does not. It is likely that the behaviour 
of a front of finite width approaches that of TG’s front as the width of the front is 
increased. However, a criterion that determines whether a front behaves as in RT 
(a narrow front) or TG (a wide front) has not yet been obtained. 

In this paper an attempt is made to interpret the generation of the intrusions found 
in RT’s experiment as a result of an instability of a salinity-temperature front of finite 
width.t Considering asymptotic limits of infinite and infinitesimal widths, the 
conditions under which the nature of the front resembles that of RT or that of TG 
are also derived. 

2. Formulation of the problem 
2.1. Basic field 

We consider a salinity-temperature front of finite width that has the following 
distributions of temperature and salinity 8 (see figure 1)  : 

where 

The x- and z-axes are taken in the cross-frontal and vertical directions respectively. 
The overbar denotes quantities of the basic field. It can be seen that horizontal 
gradients of the temperature and salinity are confined to the region given by 1x1 < a, 
where a is the half-width of the front. The temperature and salinity differences across 
the front are constant with depth, and are given by 2(B/a) A S  and 2AS respectively, 
where /3 is the salinity contraction coefficient. Since the density p is given by 
j5 = po[l -a(T-T,)+B(8-So)], with reference density, temperature and salinity, po, 
T, and So respectively, there is no horizontal gradient of the density. The temperature 

t Although sugar and salt were used in RT’s experiment instead of salt and temperature, 
description will be hereinafter made in terms of salt and temperature to avoid confusion; i.e. ‘salt’ 
denotes the slower-diffusing component and ‘temperature ’ the faster-diffusing one. 
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FIQURE 1 .  Profile of the function f(s) that gives the cross-frontal distributions of the 
temperature and salinity in the basic field. 

and salinity have constant vertical gradients and produce a stable vertical strati- 
fication of the density characterized by the Brunt-VZiisala frequency 
N = [ - (g/p,) ap/az]r. The parameter 5 :  = (g/3as/az)/N" gives the ratio of the density 
stratification due to  salinity to the total density stratification. If 6 > 0 the basic field 
.can support salt fingers. If - 1 < 5 < 0 it is absolutely stable, and if 6 < - 1 it can 
support diffusive convections. 

We may consider the front given by (2.1)-(2.3) as a crude model of the field in RT's 
experiment immediately after the internal gravity waves have died down. The 
mixing that occurred when the barrier was withdrawn has already spread the initial 
sharp front to one of finite width. 

I n  addition to the experiments described in $1,  Ruddick & Turner (1979) 
performed three extra experiments for the configuration in which A S  is constant with 
zf (see table 1). For these experiments, they found that the vertical scales of the 
intrusions did not have a systematic dependence on zp but were again scaled by 
g(1- y ) / 3 A S / P ,  where y is the density flux ratio of temperature to salt. Although 
most of RT's experiments were made for the configuration in which A S  was 
proportional to zf, we shall avoid the complexity that is introduced by considering 
a linear dependence of AS  on zf. Once the behaviours of the intrusions are found for 
constant AS, however, it may be possible to infer those for the case in which AS is 
proportional to zf by replacing A S  by its local value. 

2.2. Governing equations 
Consider a disturbance of infinitesimal amplitude superposed on the basic field, and 
assume that the disturbance has a lengthscale much larger than that of the salt 
fingers. Then the evolution of the disturbance may be described by the following 
equations : 

0 = --+g(aT-PS), aP 
aZ 

au aw 
ax aZ -+- = 0, 
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where u and w are the velocities in the x- and z-directions respectively, p the 
kinematic pressure, T the temperature and S the salinity. 

The following assumptions and approximations are made to derive the above 
equations. 

(i) Two-dimensionality is assumed, since it can be expected that a disturbance 
which has a y-dependence has a smaller growth rate. 

(ii) The Boussinesq approximation is used. 
(iii) The hydrostatic approximation is used, since the aspect ratio of the intrusion 

found in RT’s experiment seems to be fairly small. In fact, it will be shown in 
Appendix B that non-hydrostatic effects are not significant in RT’s experiment 
except immediately after the barrier has been withdrawn. 

(iv) In order to express the effect of enhanced vertical mixing of the temperature 
and the salinity due to salt fingers, Stern’s parametrizations are used: i.e. the salt 
flux is assumed to be given by - K, aS/az, where K, is a constant eddy diffusivity, 
while the temperature flux is assumed to be proportional to the salt flux with a 
constant of proportionality (P/a)y .  The value of y has been measured in so-called 
run-down experiments by several authors. Recent measurements suggest that y is 
not a constant and is a function of the density-anomaly ratio r ,  which is defined as 
the ratio of the temperature difference to the salinity difference in the vertical 
direction (Schmitt 1979; Griffiths & Ruddick 1979; McDougall & Taylor 1984). For 
r < 2, for example, the value of y seems to be 0.65-0.70 for the temperature-salt 
problem (Schmitt 1979; McDougall & Taylor 1984) and 0.88-0.92 for the salesugar 
problem (Griffiths & Ruddick 1979). In what follows, however, we shall assume for 
simplicity that y is a constant. 

(v) In  order to retain the possibility that the salt fingers transfer some horizontal 
momentum, it is also assumed that there is an eddy-momentum flux given by 
-CK,  au/az. However, we have not excluded the possibility that the momentum is 
transferred principally by a molecular process. For simplicity, B = V / K ,  is assumed 
to be constant, and may be termed a Schmidt number, where v is either molecular 
kinematic viscosity v, or eddy kinematic viscosity v,. 

The parametrizations (iv) and (v) may be applied to the salt-finger interfaces but 
neglect the presence of the diffusive interfaces. Since the intrusions in RT’s experiment 
have a tilt that indicates that they are driven by the salt-finger process (Turner 
1978), however, it is assumed that the absence of the diffusive interfaces is not 
essential to the dynamics of the intrusions. The effect of the diffusive interfaces will 
be discussed in $4. 

The parametrizations (iv) and (v) also assume the presence of the salt fingers from 
the beginning. Within the framework of a linear theory, this requires that the basic 
field is ‘finger-sense’ stratified. Therefore we shall hereinafter consider the case g 2 0 
only. 

2.3. Methal of solution 
Consider a wave disturbance whose vertical wavenumber is m. Then any variable, 
say 7, can be expressed as 

7 = Re [jj(z) eimz+at], (2.10) 
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where Re[ 3 denotes real part. a is the eigenvalue to  be determined, and can in 
general be a complex number. I n  this paper, however, we shall look for a real positive 
eigenvalue, which seems relevant to  the intrusion problem. Thus a may be termed 
the growth rate. 

Substituting (2.10) into (2.4) and (2.6)-(2.8), we can express all the variables in 
terms of p : 

(2.11) 
1 u = - i m k  = - 

a + EK,  mZP'9 

m 
imgP 

[ f 'p' A S  - - p"] 
1 

S =  
(a + K ,  m2) (a  + EK, m2) 

(2.12) 

(2.13) 

a + ( l - y ) ~ , m ~ P A S  1 -- N2 P" 
f U + K , ~ ~  a u + E K , ~ ~  ag im(a+EK,m2) 

"} (2.14) -_ N2 [a+ (1 - y )  K, m2] 5 
a g  im(a + K, m2) (a  + EK, m2)' , 

where $ is the stream function and ' : = d/dx. The hat * has been dropped. 
Substitution of (2.1 1)-(2.14) into (2.5) gives a second-order differential equation 

for p :  
i@, m3 mza(a + EK, mz) (a  + K, m2) 

[a+ (1 +,u) K,m21 ~2 
p = 0, (2.15) 

'"-[a+ (1 + p )  K, m2] N z  f P'-  

where Q = PAS( 1 - y )  g and 
(2.16) 

Now we non-dimensionalize (2.15) in the following way: 

x = ax,, m = d-lm,, a = K,d%,, (2.17) 

where the asterisk denotes dimensionless quantities and 

d = g/  N2. 

p"-iLf'p'-k2p = 0, 

Dropping the asterisks, we obtain 

where L = m3/[a+(l+p)m2],  

k = m {  [v( cr + em2) (a + m2)] 
G[c+(1+,u)m2] 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

and G = N2ds/KEa2. (2.22) 

It can be seen from (2.19)-(2.22) and (2.3) that the stability of the front is described 
by three external parameters: G,  p and the Schmidt number E .  G will turn out to be 
most important stability parameter in an inviscid flow ( E  = 0) ,  and will be termed 
a frontal stability parameter. p will be termed a stratification parameter, since it is 
related to 5 through (2.16). As mentioned in 52.1, we shall only consider the case 
p 2 0. 

The solutions of (2.19) for x > 1 and x < - 1 are given by 

p = A exp(-kkz) (x > 1) (2.23) 

and p = B exp (kx) (x > - l), (2.24) 
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where A and B are complex constants. On the other hand, the solution for 1x1 < 1 
is given by 

p = C exp (in, x) + D exp (in, z), (2.25) 

provided that n, and n2 are not equal,? where nl = +[L+ (L2-4k2)t] and 
n, = f[L-(L2-4k2$]. 

These solutions (2.23)-(2.25) must be matched at z = & 1. The matching conditions 
are that the pressure and the horizontal velocity be continuous, i.e. 

and 

p is continuous 

p' is continuous.$ 

(2.26) 

(2.27) 

Applying these conditions at z = f 1, we obtain the following equation for the 
eigenvalue u : 

2k2(exp [i(L2-4k2)k] -exp [ -i(L2 -4k2)i]} 

+ik(L2-4k2)t{exp [i(L2-4k2):]+exp [-i(L2-4k2)t]} = 0. (2.28) 

When L2-4k2 < 0, (2.28) can be written as 

tanh (4k2 - L2)t = - (4k2 - L2)i/2k. (2.29) 

Since k and (4k2-L2)t are positive, however, (2.29) has no solution. When 
L2-4k2 > 0, on the other hand, we have 

tan (L2 - 4k2)! = - (L2 - 4k2)t/2k 
or 

In 5 3 the behaviour of the eigenvalue is examined by solving (2.30). 

3. Results 
3.1. Analytical considerations on the behaviour of the eigenvalues 

Before presenting the results of the numerical calculation of the eigenvalues, we shall 
consider analytically some properties of the eigenvalues based on (2.30). 

If we denote by u,, the values of u for which the argument of the tangent in (2.30) 
become $m (n = 0, 1, . . .) the equation for u, is 

The behaviour of u, can be examined graphically. Figure 2 shows the function 
F(u) = ms/[u+ (1 +p)  me], (dashed line) and the functions G,(a) = 
4m2a(u + Em2) (u + m2))/G[cr + (1 +,u) m2] ++n2x2 (n = 0, 1 , . . .) (solid lines) against u. 
The curves are drawn schematically for (1  +p)  x < m < $(1 + p )  R. Since we are 

t When L2 = 4ka the solution for 1x1 < 1 must be changed to p = C eikZ + Dx elkz. Applying the 
matching conditions (2.26) and (2.27) to this solution and the solutions (2.23)-(2.24), we obtain 
2k2+ k = 0. Since k is positive, however, this equation has no solution. 

$ This condition can be also obtained by integrating (2.19) between x = k l - ~  and 
fl+K ( K  4 1). 
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FIGURE 2. Graphs of F ( a )  and G,(cr) when m is between (1 +p)  x and #( 1 +p)  X. F ( a )  is shown by 
the dashed line and G,(cr) by the solid lines. F(a) intersects the vertical axis (the E-axis) at 
f = mz/(l +P)~, while G,(cr) intersects i t  at 6 = an2n2. The value of cr at the point where F(u)  
intersects Gn(u)  gives un. 

considering the case p 2 0, F(a) is a monotonically decreasing function of u, and 
G,(u)  is a monotonically increasing function of u. The points where F(u) intersects 
G,(u)  give u,, the roots of (3.1). u, exists for all values of m, and the condition for 
the existence of vn is given by m2 > i(1 since F(0)  = m 2 / ( l + p ) 2  and 
G,(O) = in2x2. 

Now the left- and right-hand sides of (2.30) are shown by the solid lines and the 
dashed line respectively in figure 3. The curves are drawn schematically for 
2( I + p )  R c m < %( 1 + p )  R.  The points where the dashed line intersects the solid lines 
give the eigenvalues. Note that u = u, is not an eigenvalue, since L2-4k2 vanishes 
when IT = u,,. From figure 3 we can deduce the following important facts. 

(i)  If u21+1 ( I  = 0,1,2,  . . .) exists then an eigenvalue u exists between u21+2 and u21+1 
(if u21+2 exists) or between 0 and 

(ii) Since existence of u21+1 depends only on the value of m, so does the number 
of the eigenvalues. It is equal to ( m / (  1 +p)  R +i), where ( ) is Gauss’s notation for 
denoting the largest integer that is smaller than m / (  1 +p) 7c + i. 

(iii) There is no eigenvalue for m > m, = i(1 +p)7c, where m, will be termed the 
critical wavenumber. When m < m,, u1 does not exist. The left- and right-hand sides 
of (2.30) respectively increase and decrease monotonically as u decreases from go. 

Thus the dashed and solid lines do not intersect except a t  u = u,. The minimum 
value of the critical wavenumber is realized for p = 0 and is equal to in. This result 
coincides with the energy argument of RT that the height of the intrusion cannot 
exceed 4d.t 

(iv) The eigenvalue u of the fastest-growing mode exists between u2 and u1 if 
m > (l+p)7c (or between 0 and u1 i f i ( l + p ) n  < m < ( l + p ) n ) .  

(v) The front is always unstable, even if viscosity is present; i.e. there is no 
marginal stability curve. 

(if uZlf2 does not exist). 

t RT’s d is equal t o  [ 2 ( 1 - ~ ) ] - l  times our d. 
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FIGURE 3. Graphs of the right- and left-hand sides of (2.30) for 2( 1 + p ) x  < m c g(1 + p )  X .  

The right-hand side (RHS) is shown by the dashed line and the left-hand side (LHS) by the solid 
lines. The solid lines intersect the u-axis at u = uzn (n = 0,1,2,. . .), while they tend to infinity a t  
u = cr,,+,. The values of u at the points where the dashed line intersects the solid lines give the 
eigenvalues. 

The above facts make it possible to derive the asymptotic behaviour of the 
eigenvalue for high wavenumbers. Let us assume that crn - ma as m+ CO, where a 
is a constant to be determined. G and e are assumed to be O( 1) quantities. If OL. is larger 
than 2 it can be shown that (3.1) has no solution. If a is less than 2, on the other 
hand, (3.1) becomes 

which in turn gives 

Thus it is expected that when viscosity is absent the growth rate increases and 
approaches the asymptotic value [G/4(1 +p)]i  as the wavenumber becomes large. If 
viscosity is present, however, the growth rate eventually becomes small for high 
wavenumbers. It can also be seen that the effect of p is to reduce the growth rate 
for high wavenumbers ; i.e. the basic salinity stratification in which salinity increases 
linearly upward has a stabilizing effect. 
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FIGURE 4. The growth rate as a function of the wavenumber for G = 1, lo2, lo4 and lo', when E = 0 
and p = 0. The solid lines show the growth rate under the hydrostatic approximation and the 
dashed lines the growth rate without the approximation (6 = 1.0). 

3.2. Results of numerical calculations 
The eigenvalue (growth rate) waa calculated from (2.30) by using Newton's iterative 
method for various combinations of G, y and E .  As the initial guess for the eigenvalue, 
the average of n1 and n2, which were also calculated from (3.1) by Newton's method, 
was used. 

Figure 4 shows the growth rate (solid lines) as a function of the vertical 
wavenumber m for various values of G when viscosity is absent and y = 0. It can 
be seen that the growth rate increases with increasing G. For a fixed value of G the 
growth rate increases with the wavenumber and approaches the asymptotic value 
@ predicted by (3.3). The most important feature of this figure, however, is that 
more than half of the asymptotic value is attained for m < 10 when G < lo6. Since 
motions associated with high wavenumbers are expected to be damped when there 
is some viscosity, this feature suggests that our choice of the vertical scale in (2.17) 
was correct, at least for G < lo6. In  fact, if the effect of viscosity is included, a 
maximum in the growth rate is produced a t  a moderate value of m. Such an example 
is shown in figure 5 for E = 1.0, y = 0 and for G = 1,  lo2, lo4 and lo6. It can be seen 
that the growth rate again increases with G. The wavenumber of the fastest-growing 
mode (hereinafter abbreviated as FGM) also increases with G. 

The growth rates when the hydrostatic approximation is not used are shown by 
the dotted lines in figures 4 and 5 (see Appendix B). As shown in Appendix B, the 
non-hydrostatic effects depend on the parameter S = d / a  = g( 1 - y )  /3AS/Naa. The 
dotted lines in these figures are obtained for S = 1 .O, which seems to be a typical value 
in RT's experiment.t Figures 4 and 5 suggest that the non-hydrostatic effects are 
not significant for RT's experiment, and for this reason the results will hereinafter 
be shown only for the hydrostatic case. 

The streamlines, temperature, salinity and buoyancy fields of the FGM for E = 2.0, 
y = 0, G = lo4 and m = 6.4, and the corresponding total temperature and salinity 
fields in which the maximum amplitude of the temperature perturbation is assumed 

t The initial width of the front in RT's experiment seems to be of order d (see 84.1). 



Linear stability of temperature-salinity front 81 

FIGURE 5. Same as figure 4 but E = 1.0. 

to be 0.44(pAS/a) ,  are shown in figures 6 (a-f) respectively. The direction of the tilt 
of the intrusion is in the same sense as that of the isotherms of the basic field, as RT 
observed in their experiment. The cold/fresh water is sinking and the warm/salty 
water is rising, which is characteristic of the intrusion driven by salt fingers (Turner 
1978). Furthermore, the amount of tilt is about one wavelength across the front. This 
is also similar to what was observed in RT’s experiment (see RT’s figure 3a) .  
However, a qualitative difference is found for the circulation pattern. The theory 
predicts an alternation of the clockwise and counterclockwise circulations in the 
vertical direction, while only clockwise circulations were dominant in their experi- 
ment. In RT’s experiment the clockwise circulation is associated with the salt-finger 
interface, and the anticyclonic one with the diffusive interface, which is much thinner 
than the salt-finger interface. Since the present theory neglects the presence of the 
diffusive interface, it is unable to produce the asymmetry in the circulation pattern. 

The wavenumber of the FGM and the corresponding growth rate for p = 0 are 
shown respectively for various values of G and e in figures 7 and 8.  Generally 
speaking, the wavenumber of the FGM decreases as G is decreased and/or e is 
increased. However, there is an asymptotic wavenumber that gives the smallest 
wavenumber of the FGM for all combinations of G and e. The asymptotic wavenumber 
is 2.88 and the corresponding growth rate is given by 

0.047 19G/4s (3.4)  

(see Appendix A). The growth rate of the FGM also decreases as G is decreased and/or 
e is increased. For small values of G / E  the asymptotic formula (3 .4)  gives an excellent 
approximation to the eigenvalue. 

The asymptotic relations (3.3) and (3 .4)  suggest that the parameter R defined by 

may play an important role in determining the stability when e += 0. In fact, this 
turns out to be the case. Figures 9 and 10 show the wavenumber of the FGM and 
the corresponding growth rate for various values of R and e when p = 0. It can be 
seen from figure 9 that the wavenumber of the FGM changes within a factor of two 
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FIGURE 6. The stream function (a), temperature (b), salinity (c) and buoyancy (d) fields of the 
fastest-growing mode for E = 2.0, p = 0,  G = lo4 and m = 6.4, and the corresponding total 
temperature (e) and total salinity field ( f ) ,  in which the amplitude of the temperature perturbation 
is taken to be 0.44PASla. The vertical coordinate is scaled by the wavelength Zr r l rn .  Warm salty 
water is in the right-hand side. C, W, F, S, N and P stand for cold, warm, fresh, salty, 
negative and positive respectively. 
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FIQURE 7. The wavenumber of the fastest-growing mode for various values of G and E when p = 0. 
The numbers near the curves show the value of E.  The wavenumber interval indicated by the arrows 
near the abscissa shows the range of observed wavenumbers in RT's experiment in which salt 
concentration increased with the local depth 2,. The dashed lines show the combinations of (G, E )  

when the scale dependence of the eddy diffusivity is considered. The open circles show the 
combinations of (G, E )  for the integer values of m indicated near the circles. 

L > U  

10- lo-' 10-1 1 10 LO' 

FIGURE 8. The growth rate of the fastest-growing mode for various values of G end e when p = 0. 
The numbers near the curves show the value of E.  

when e is changed from 10-3 to lo3 for a fixed value of R. Furthermore, the curves 
for e > 10 almost collapee to the ourve for e = loa, These features are not seen in 
figure 7, in which the wavenumber of FGM i s  plotted against G. Figure 10 also shows 
that the curves of the growth rate of FGM for e > 10 almost collapse onto the curve 
for 6 = lo3. Such a feature is Dot seen in figure 8 either. Thus when R is used as a 
stability parameter instead of G, the dependence of the wavenumber and growth rate 
of FGM on the Schmidt number is quite weakened.? For this reason, we shall 
hereinafter show the results in terms of R. The parameter R will be termed a modified 
frontal stability parameter. 

Figure 9 shows that the dependence of the wavenumber of the FQM on R changes 
according to the value of R. When R is small (R < 40) the wavenumber seems to 
approach a constant asymptotic value for the range of e considered in the present 
theory ( 10-a-103). The asymptotic value corresponds to a vertical wavelength of 2 . M .  

t This result was suggested by one of the referees. 
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The numbers near the curves show the value of E. The wavenumber interval indicated by the arrows 
near the ordinate shows the range of observed wavenumbers in RT's experiment in which salt 
concentration increased with zf. The vertical dashed lines show the values of R,,, and R,,,. 
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FIGURE 10. The growth rate of the fastest-growing mode for various values of R and E when p = 0. 
The ordinate is the growth rate divided by &. The numbers near the curves show the value of E .  

The vertical dashed lines show the values of R,,, and Rmi,,. 

Thus Ruddick & Turner's (1979) scaling applies well. When R > 2 x lo5, on the other 
hand, the curves tend to  be straight lines whose tangent is about :. This seems to 
suggest that  when R is large the wavenumber tends to  be scaled by dP1&. Similar 
features can be seen in figure 10. When R is small the growth rate tends to be 
proportional to  R, in accordance with (3.4). When R is large, on the other hand, it 
tends to be proportional to  &. 
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The wavenumbers and the corresponding growth rates of the FGM for various 
values of p are shown in figures 11 (u-e) and 12 (u-e) respectively. It can be seen from 
figure 11 that the wavenumber of the FGM increases with increasing p for small R, 
but decreases for large R. For a particular value of p, the dependence of the 
wavenumber of the FGM on R is similar to that for p = 0; i.e. the wavenumber 
becomes independent of R for small R and proportional to R! for large R. However, 
the asymptotic wavenumber for small R increases with increasing p as predicted by 
(A 3) in Appendix A. If the regime in which the wavenumber becomes almost constant 
and the one in which the wavenumber becomes proportional to are termed the 
small-R regime and the large-R regime respectively, it  can be seen that the transition 
from the small-R regime to the large-R regime occurs at a larger value of R when 
p is larger. 

Figure 12 shows that the growth rate of the FGM decreases as p is increased. The 
decrease in the growth rate is larger for small R than for large R. The reason why 
the growth rate decreases as p is increased can be explained as follows. If (2.7) and 
(2.8) are combined to give the time rate of change of the buoyancy g(aT-bS) we 
have 

a a2s g-(aT-bS) = -N2W-/3(l-y)Ke- 
at a22 . 

The first term on the right-hand side arises because the buoyancy is reduced when 
a fluid particle moves upward against the stable density stratification. The second 
term on the right-hand side expresses the production of buoyancy through selective 
transport of temperature and salinity due to salt fingers. Since we are assuming a 
wavy structure in the vertical direction, this term is proportional to S. On the other 
hand, the time rate of change of 8 is governed by (2.8), which shows that the 
- production of S is reduced when there is a positive vertical gradient of 8. Thus, when 
S, is increased for a fixed value of N2 (i.e. p is increased), the production of the 
buoyancy due to salt fingers is reduced, and so is the growth rate. The case in which 
the movement of the fluid particle is downward can be discussed similarly, and 
results in the same conclusion. 

Figure 12 also shows that the growth rate is proportional to R for small R (in 
accordance with the asymptotic analysis in Appendix A) and proportional to fi for 
large R. This feature is similar to that for p = 0. It is obvious that the regime in which 
the growth rate is proportional to R and the one in which it is proportional to Rl 
correspond respectively to the small-R regime and the large-R regimes. 

We shall now try to determine the values of R above and below which the large-R 
and small-R regimes respectively prevail. If these values of R are denoted respectively 
by Rmin and R,,,, then the large-R regime prevails for R > Rmin and the small-R 
regime for R < R,,,. Here we shall define R,,, as the value of R above which the 
wavenumber of the FGM for E = 10-"103 is more than twice the asymptotic 
wavenumber for small R. This definition of R,,, together with figures 9 and 11 give 
the following experimental relation between R,,, and p : 

R,,, = 40(1 (3.7) 

On the other hand, Rmin may be defined as the value of R above which the 
wavenumber of the FGM divided by R! becomes less than 120 yo of its asymptotic 
value for large R (see the asymptotic analysis in $4.2). This definition of Rmin gives 

(3.8) R~~~ = 2 x 105(1 +p)4.9.  



86 H .  Niino 

I 

1 

R m i n  

10 

101,' 103 

10-2 10-1 1 10 109 10' 104 IW 100 107 108 108 

R 

lo" 

10' 
m 

10 

I 
lo-* 10-1 I 10 109 10' 104 106 106 107 iw 108 

R 

lea 1 
10' 4 

= 10-3 

10 

I 
I 

I 
I 

I-)'- r r  

&in 

10 

lo*, 103 

F".l 

IO-* 10-1 1 10 10' 10 104 1 0 6  100 107 108 108  

F I ~ U R E  11  (a-c). For caption see facing page. 
R 



Linear stability of temperature-salinity front 

I 
I 

I 

I 
I 
I 

I I 

1 I . , . . . - - r  

I I 

+ 
IO-1 10-1 1 10 10' 10' 10' 106 106 107 108 109 

R 

10' 

10' 
m 

10 

87 

1 I I 

10- 10-1 I 10 108 10s 10' 106 108 107 108 100 

R 

FIQURE 1 1 .  The wavenumber of the fastest-growing mode for various values ofp and 6: (a) p = 0.5; 
( b )  1.0; (c) 2.0; (d) 3.0; (e) 5.0. The numbers near the curves show the value of E.  The vertical dashed 
lines show the values of R,,, and Rmin. 

The values of Rmin and R,,, are shown by the vertical dashed lines in figures 9-12. 
It can be seen from figures 10 and 12 that the values of Rmin and R,,, determined 
from the above criteria reasonably separate the small-R regime, in which the growth 
rate is proportional to R, and the large-R regime, in which i t  is proportional to &, 
from the transition regime between them. 

4. Discussion of the results 
4.1. Comparison with Ruddick & Turner's (1979) experiment 

Table 1 presents the parameters used in RT's three experiments in which the 
salt-concentration anomaly (AS across the front) was constant with depth. As can 
be seen from the value of g in table l,? the stratification is in the 'diffusive sense' 

t These values of 5 were kindly provied by B. R. Ruddick (1984, private communication). 
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bAS 

Experiment 1 

0.012 
0 

1.2 cm 
3.0 cm 
2.5 
2.5 
9 x cm2 s-l 
3 x  lo4 
2 x  102s 
1 

1.3 x 10-3 

3 x 104 

Experiment 2 

0.0015 
< - 1  

0.15 cm 
0.30 cm 
2.0 
3.1 
4 x cm2 s-l 

5 x  10's 
3 x  10' 
1 x 1 0 a  

1.2 x 10-3 

4 x 103 

Experiment 3 

0.0055 
1.96 

1.0 cm 
2.3 cm 
2.3 
2.7 
5 x cm2 5-l 

3 x  lo4 
2 x  102s 
2 
2~ 104 

0.67 x 10-3 

TABLE 1. Parameters in Ruddick & Turner's (1979) three experiments in which A S  
is constant with z, 

in Experiment 2, and in the 'salt-finger sense' in Experiment 3. There is no salinity 
stratification in Experiment 1. Strictly speaking, the present linear theory is valid 
only for the case C 2 0, which ensures the presence of salt fingers. Since salt fingers 
were observed between the intrusions even in Experiment 2, however, a comparison 
will be also made for this case. (-l/po)@/az is a measure of the basic density 
stratification and d is the vertical scale defined by (2.18), where y is taken to be 0.88 
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as in RT. H is the height of the intrusion found in the experiments, 1 : =  Hld the 
dimensionless height and m the corresponding dimensionless wavenumber. Since the 
stratification parameter p defined by (2.16) is small compared with 1 in RT’s 
experiment because of the factor 1-7, we shall use only the theoretical results for 
p = 0 for the purpose of the comparison to  the experimental resu1ts.i 

I n  order to compare the theoretical and experimental results, i t  is necessary to 
estimate the magnitudes of R and e in the experiment. The modified frontal stability 
parameter R is defined by 

R = N 2 d e / E K g a 2 ,  (4.1) 

where we have three unknown quantities K,, a and E .  The value of a seems to  be 
determined by the mixing due to initial disturbances. Figure 2 ( b )  of RT suggests that 
the horizontal scale of the mixing region is about the same as the height of the 
intrusions; i.e. 2a - H = Id - 2d (see table 1 ) .  Thus we may assume that a - d. 

To estimate the eddy diffusivity of salt due to salt-fingers is a more difficult task. 
However, we start from the definition of the eddy diffusivity : 

Ke = PJkIPSz, (4.2) 

where Fs is the salt flux due to salt fingers and S, is the vertical gradient of salt 
concentration across the salt-finger interfaces. 

I n  RT’s experiment the vertical stratification of the basic salinity field is not so 
strong, and the typical salinity change over the height of the intrusions is a t  least 
four times smaller than the salinity difference across the front (e.g. in Experiment 
3, p(a8laz)  H = 2.7 x while 2pAS = 0.011). Therefore the salinity difference 
across the salt-finger interfaces is likely to  be determined by horizontal advection of 
salinity due to  the intrusions and is considered to  be of the order of 2pAS. 

If we use Stern & Turner’s (1969) experimental result to estimate pFs together with 
the above estimate of the salinity difference across the salt-finger interfaces, /IFs and 
pS, may be given by 

pF, x A(2pAS)i (4.3) 

and pS, z 2pAS/H, (4.4) 

where A was estimated by Stern & Turner (1969) to be around g cmV2 s-l for 
saltlsugar fingers. Accurate measurements by Griffiths & Ruddick (1979) also 
suggest that  A is around for small values of the density-anomaly ratio. 
Substituting (4.3) and (4.4) into (4.2), we obtain 

K, w H(2PAS)i x em2 s-’. (4.5) 

The values of K, calculated from (4.5) are shown in table 1 together with the frontal 
stability parameter G and the diffusion timescale d2/Ke, which is used to scale the 
time in the present theory. The values of K, could be smaller than those presented 
in table 1, since the vertical salinity difference should be less than 2pAS and also the 
coefficient A in (4.3) should be smaller than g emp2 s-l. These estimates of the 
eddy diffusivity suggest that  the eddy diffusivity K, is smaller than the molecular 
kinematic viscosity u,. 

The vertical momentum-transfer process due to  salt fmgers is not yet well 
understood. Let us consider here the ratio of the vertical momentum flux by salt 
fingers to that by molecular processes : u’w’/u,(au/az). If the correlation coefficient 

-t The effect of salinity stratification can considerably affect the stability of oceanic fronts, where 

- 

1 --y is 0.30.35 (Schmitt 1979; McDougall & Taylor 1984). 
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Experiment 1 Experiment 2 Experiment 3 

m (observed) 2.5 

e-folding time 6 s  
m (theory) 9.0 

3.1 
3.4 
6 x 10' s 

2.7 
7.9 
1 x 10' s 

TABLE 2. Comparison of the wavenumber of the intrusion between the theoretical prediction 
and the observed value 

between u' and w' is denoted by C, (IC,( < 1)  then the ratio may be written as 
C, w'H/u,. If we multiply this expression by 2AS then we have 

- C1 Ke --- w'2AS C, wlsl 
=- 

c1u,(2AS/H) C, v,(aS/az) C, v,' 

where C, is the correlation coefficient between w' and S'. Since salt fingers are driven 
by a buoyancy excess due to salt, it is probable that the correlation coefficient C, 
for w' and s' is larger than C, for u' and w'. Thus (4.6) suggests that the momentum 
flux due to salt fingers could be smaller than that due to molecular processes. If the 
molecular kinematic viscosity (u, = lo-, om2 s-l) is used for the viscosity term, 
then the values of K, in table 1 suggest that the Schmidt number E may be between 
1-3 x 10'. Finally, the above estimates of a ,  K, and E gives the value of R listed in 
table 1. 

We shall now compare the theoretical results with experimental values. Given the 
estimated values of R and IZ, we can obtain the wavenumber of the FGM from figure 
9. This is compared with the observed one in table 2. The predicted scales are found 
to be about three times smaller than those observed in the experiment except for 
Experiment 2, where good agreement is seen. 

The wavenumber interval indicated by the arrows on the left-hand side of the 
vertical axis in figure 9 shows the observed wavenumbers in most of RT's experiments 
in which the salt-concentration anomaly 2pAS increased with zf (2pAS = 
zf(- l/po)tlp/Clz). For these experiments the value of ,u is between -0.12 and 0, so 
that the present linear theory cannot be applied in a strict sense. Since rigorous salt 
fingers were observed in these experiments, however, we shall try to compare the 
theoretical and experimental resu1ts.t If we estimate a and K, in the same manner 
as described above and take H - 3d (see RT's figure 5 )  then R and E are given by 

and (4.9) 

Thus when zf and/or ( - l/po) ap/az increase, R increases and E decreases. Since the 
value of zf and ( -  l/po) @/az in the experiments are respectively between 3 and 
25 cm and between 0.33 x cm-' (see RT's figure 5), R is between 
2.2 x lo2 and 1.4 x lo5 and E between 0.4 and 6.8. For these values of R and E ,  figure 
9 suggests that the wavenumber of the FGM ranges between 3.6 and 13. Considering 

t The present theoretical treatment may be formally valid even for - 1 c p c 0 as far as the 
presence of salt fingers is ensured, although we shall use the theoretical results for p = 0 in order 
to compare with the experimental ones. 

and 7.5 x 

4 Y L M  IS1 
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Experiment 1 Experiment 2 Experiment 3 

2.19 x 10-2/m cm2 SP Ke 

E 0.46m 7.46m 0.72m 
R 1.2 x 104m 4.4 x 10’m 4.7 x 1Q3m 
m 15.0 3.7 9.7 

1.34 x 10-2/m om2 5-l 1.38 x 10-2/m cm2 s-l 
G 5.50 x 103m2 3.32 x 102m2 3.44 x 103m2 

TABLE 3. The wavenumber of the fastest-growing mode when the scale dependence 
of the eddy diffusivity is considered 

the rough assumptions made in the theory, the agreement seems to be satisfactory. 
It is especially noteworthy that the theory predicts the right scaling d for the height 
of the intrusions. 

Two possible reasons for the discrepancy between the observed wavenumber and 
the predicted wavenumber of the FGM may be considered. First, since the intrusion 
in the experiment is a nonlinear phenomenon, the wavelength could be different by 
a factor of two or three from what is expected from the linear stability theory. In  
fact, recent investigations on various instabilities show that the wavenumbers of the 
observed finite-amplitude waves are different from those of the FGM by a factor of 
two or three (see e.g. Yoshizaki 1982; Niino & Misawa 1984). 

Secondly, the assumption of constant eddy diffusivity may not be appropriate. 
Based on the assumption that the heat and salt fluxes through salt-finger interfaces 
dominate those through diffusive ones, Stern’s parametrizations in (2.7) and (2.8) 
neglect the presence of the diffusive interfaces and introduce constant diffusivities 
of heat and salt everywhere. Although the assumption that the fluxes through 
the salt-finger interfaces are important is supported by the sense of the tilt of the 
intrusions in the RT’s experiment and leads us to the right scaling for the 
wavenumber of FGM, the effect of the diffusive interfaces where the effective 
diffusivity becomes very small but the vertical gradients of velocity, salinity and 
temperature become large could play a role in determining the precise value of the 
wavenumber. The effect of the diffusive interfaces remains an important problem to 
be studied in the near future. 

As (4.5) suggests, the eddy diffusivity could also depend on the vertical scale of 
the intrusions. Although the effects of the scale dependence of the eddy diffusivity 
cannot be explicitly taken into account in the linear stability theory, they may be 
examined using (4.5) and figure 7 . t  For intrusions whose vertical wavenumber is m 
the eddy diffusivity due to salt fingers is given by 

2nd 
K, = lo-’- (2/3AS)). 

m (4.7) 

This produces a wavenumber dependence of E and G as shown in table 3. Figure 7 
shows the combinations of (G, E )  as functions of m (the dashed lines) for RT’s three 
experiments. The open circles on the dashed lines show the combinations of (G,  E )  for 
several integer values of m. The points where the wavenumber on the dashed lines 
coincides with that of the abscissa is considered to give the wavenumber of the FGM 
when the scale dependence of the eddy diffusivity is present. The wavenumbers thus 

t We shall use figure 7 instead of figure 9 to examine the effect of the scale dependence of the 
eddy diffusivity on the stability, because figure 7 gives a better resolution for m < 12 than does 
figure 9. 
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obtained are shown in table 3 for the three experiments. It can be seen that the scale 
dependence of the eddy diffusivity tends to increase the wavenumber of the FGM. 
Thus the scale dependence of the eddy diffusivity does not seem to explain the 
discrepancy. 

The theoretical predictions of the growth rates corresponding to the three RT 
experiments can be obtained from figure 10 and are shown in table 2. The e-folding 
time for Experiments 1 and 3 is about 10 s, which seems to be somewhat shorter than 
what was observed in RT’s experiments. The e-folding time for Experiment 2 is 
about 60 s and seems to be in good agrement with experiment. Again, in spite of the 
crude model assumed in the theory, the agreement seems to be satisfactory. 

4.2. Asymptotic behaviour of the present moa‘el: comparison with Toole & Georgi’s 
(1978) model and Ruddick & Turner’s (1979) model 

The present results show that, for fixed values of E and p, the preferred scale of the 
intrusion becomes independent of R and the growth rate becomes proportional to R 
when R is small (the small-R regime). When R is large (the large-R regime), on the 
other hand, the preferred scale becomes proportional to R-f and the growth rate to 
Rk In  order to understand the physical implication of this behaviour, we shall 
decompose the modified frontal stability parameter R into two dimensionless 
parameters : 

R = A4P, (4.9) 

where 

and 

(4.10) 

(4.11) 

are respectively the dimensionless width of the front and the dimensionless horizontal 
gradient of salinity in the basic field. 

First let us consider the case in which A 4 1 and 6 = 0(1) or 6 Q 1 and h = 0(1) ,  
so that R Q 1 ; for example the horizontal gradient of the mean salinity may be kept 
constant and the width of the front decreased, or the width of the front may be kept 
constant and the horizontal gradient of the mean salinity decreased. When R < 1 an 
asymptotic analysis based on (3.1) proceeds exactly in the same manner as described 
in Appendix A, and the wavenumber and the growth rate of the FGM are given by 
2.88( 1 +p)  and 0.4719R/4(1 +,u)~ respectively. Thus the asymptotic analysis explains 
the behaviour of the wavenumber and the growth rate for small R in figures 9-12. 
In dimensional units the wavelength corresponding to the asymptotic wavenumber 
is 2.2d/( 1 +p),  which is Ruddick & Turner’s scale for moderate values of p. Thus we 
may call the small-R regime the Ruddick & Turner regime. 

The balance of the terms in the basic equations for R Q 1 is given by 

(4.12) 

(4.13) 

(2.5), (2.6) and (3.6). The terms involving the time rate of change are not important 
in comparison with the vertical diffusion terms except in the buoyancy equation. 
Horizontal and vertical advections of salinity of the basic field due to intrusions are 
exactly balanced by the vertical transport of salinity due to salt fingers. The 

4-2 
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n 

p = 0  2m3/nn-mmZ(1 + p )  ( =  O(1)) 

O < / ? < i  2m3/nn ( = O(R3q) 

p = 1  R/32m2 [ -nn2n2rz+ (n4n4e2+256R-’mssp] ( = O(&)) 

Q < P < f  m(rzR)!/2h ( =  O(Rfl+:)) 

p = f  
B > f  R/4(  1 + p )  m2 ( = O( R1-2fi)) 

cr,Ri, where cro is given by m ~ / u , + ( l + p ) m ~  = 4cr,(cro/s+m~)(u,,+m~) 

TABLE 4. Asymptotic dispersion relations when R tends to infinity 

buoyancy is produced through selective transports of heat and salinity due to salt 
fingers, while it is reduced by ascending or descending against the stable 
stratification. 

Let us now consider the case in which R % 1.  R can be large for h % 1 and S = O( l ) ,  
or h = O(1) and S % 1 .  When S % 1 ,  however, several effects that  are not considered 
in the present theory are likely to become important. In  particular, non-hydrostatic 
effects and lateral diffusion effects will have to be considered. The non-hydrostatic 
effects may be studied by an  asymptotic analysis of (B 1 )  in Appendix B. However, 
it is not easy to examine the effect of lateral diffusion in the context of the present 
theory. Therefore we shall hereinafter consider only the case in which h % 1 and 
S = O ( 1 ) ;  i.e. the horizontal gradient of the mean salinity is kept constant and the 
width of the front is increased to infinity. 

Assuming that un = uORu and m = m,RP in (3.1), where mo and u, are 0(1) 
quantities, we can obtain a hierarchy of asymptotic dispersion relations according 
to the value of /3. These relations are summarized in table 4. It is found from table 
4 that the FGM is realized for a wavenumber O(H) and has a growth rate O(R$.  The 
dispersion relation is given by 

(4.14) 

The value of m, that maximizes u, for a given value of E and the corresponding value 
of u, are shown in figure 13 for p = 0. An asymptotic analysis of (4.14) gives 
m0-+{2(1+p)~[1+(1+p)4]}-4 as E + C O  and m,+[(2+p)/4(1+,~)~]f as s+O. Thus m, 
has a very weak dependence on E .  On the other hand, u,++[l+ (1 +p);]-’  as e+ co 
and u,+~i/2(1 +p)4 as s+O. Figures 9-12 show that the asymptotic relationship 
(4.14) fits well for R > 2 x 105(1 +p)4.9. 

I n  dimensional units the wavenumber of the FGM is of order ( N 2 S 2 / ~ ~ , ) f  and the 
growth rate N8e-a. Therefore the appropriate scaling for R % 1 is not given by (2.17), 
but by u = N u ,  and m = (N/K,):m,, which is Toole & Georgi’s scaling for a front of 
infinite width. 

If Toole & Georgi’s scaling is used for (2.15) with z = ( K , / N ) ~ z ,  from the beginning, 
(2.15) becomes 

(4.15) 
im3S m%(a + em2) (a+ m2)  

p = 0, p”-u+(1 +p)m2 ’p’- a+ (1 + p )  m2 

where 
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FIGURE 13. m, and u,, as functions of E for p = 0. 

8 

Then the relationship corresponding to (3.1) becomes 

4m2an(a, + em2) (a, + m2) n2x2 +- (4.16) 

which gives the following asymptotic relations between the eigenvalue and the 
wavenumber as A+ cx) : 

- #me 
[a ,+( i+p)rn2l2  - an + (1 +p)  m2 4A2 ' 

When m = 0(1), a is given by 

(4.17) 

When m = O(Afl) (/3 > 0), on the other hand, 

a- 
8 2  

4e(1+p)m2 
(. * 0). 

Therefore when 8 =I= 0 the wavenumber of the most unstable mode is O(1) and the 
dispersion relation is given by (4.17). 

The dispersion relation for Toole & Georgi's model in which an infinite front is 
assumed can be obtained from (4.15) by putting f '  = 1 for all x and assuming that 
p N eikx, where k is the wavenumber in the x-direction: 

- k2 + cr + ( 1 + p)  m2 

m2a(a  + m2) (a + ern2) 
a+ (1 +p)m2 

- = 0. (4.18) 

This equation is the same equation as TG's (20), except that the notation is 
different.? For a given m, the value of k that maximizes the growth rate may be 
obtained by differentiating (4.18) with respect to k and assuming aa/ak = 0. This 

Skm3 

gives 
m3S 

2[a+ ( 1  + p )  m2] ' 
k =  (4.19) 

t The last term ez in TG's (20) should be E ~ .  Furthermore, their (20) seems to be derived under 
the hydrostatic approximation, although they claim that it is derived when all the acceleration 
terms are retained. 
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Substituting (4.19) into (4.18), we obtain the same dispersion relation as (4.17). Thus 
Toole & Georgi’s model can be recovered as an asymptotic limit ( A  + 00)  of our model. 

It is only left to show that (4.17) coincides with (4.14). If (4.17) is dimensionalized, 
we have 

PK: Pms 
= 4m2a(a+ €Ke m2) (a + K, m*) ,  

a+ (1 + p )  K, m2 

Again non-dimensionalizing (4.20) according to (2.17), 

m6 , - 4m2a(a/€+m2) (a+m2) - 
a+ ( 1  +p)  mz R 

(4.20) 

(4.21) 

This is the same equation as (4.14) if we notice that m = m o d  and a = aoRk 
Therefore, even if the scaling given by (2.17) is used, Toole & Georgi’s result can be 
obtained as an asymptotic limit of R g 1 in our problem. 

This is also observed in the behaviour of the solution. When the dispersion relation 
(4.18) holds, L - 2k = O(H) and (L2-4k2): = O(1). Therefore the solution in the 
frontal region is approximately given by p - C ei(Llz)z, which is in the form of the 
solution assumed by Toole & Georgi (1978). The balance of the terms in the basic 
equations for R >> 1 is given by (2.4)-(2.8), so that all the terms are important. 

5. Summary and conclusions 
A linear stability theory of double-diffusive horizontal intrusions in a temperature- 

salinity front has been formulated. The stability of the front is described by three 
non-dimensional parameters : a frontal stability parameter G ,  a stratification para- 
meter p and a Schmidt number 6 .  The front is found to be always unstable even if 
viscosity is included. However, it is found that disturbances that have a vertical scale 
larger than 4d cannot grow. When viscosity is present ( E  =I= 0) ,  a modified frontal 
stability parameter R defined by GI& rather than the frontal stability parameter G 
plays an important role in determining the stability. For a fixed value of the 
dimensionless horizontal gradient of salinity in the basic field, R is a monotonically 
increasing function of the dimensionless width of the front. When R is less than 
40( 1 +p)5.4 (a narrow front), the vertical scale of the fastest-growing mode is of order 
d ,  which is the same scale as found in Ruddick & Turner’s (1979) experiments. When 
it is larger than 2 x lo5( 1 +p)4*9 (a wide front), on the other hand, the vertical scale 
tends to be given by Toole & Georgi’s scaling (1978), which was obtained for a front 
of infinite width. 

The theoretical results have been compared with Ruddick & Turner’s (1979) 
experiment. The wavelength of the fastest-growing mode obtained in the theory 
becomes of order d ,  but its precise value is somewhat smaller than the observed one. 
This is attributed to the effect of the nonlinearity and the crudeness of the 
assumption of constant eddy diffusivities. The predictions of the growth rate and the 
flow characteristics of the intrusions are quite reasonable, except that the model does 
not have the diffusive interfaces. Overall, the agreement between RT’s experiment 
and the present theory is satisfactory, considering the crude model assumed in the 
theory. 

I am grateful to Professor 0. M. Phillips, who interested me in the present problem 
through his lecture at the Ocean Engineering Department, Woods Hole Oceanographic 
Institution. Discussions with and suggestions from Dr Barry Ruddick and Professors 
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George Veronis and Melvin Stern were very helpful to me. One of the referees 
suggested the use of a modified frontal stability parameter, which considerably 
reduces the dependence of the stability characteristics on the Schmidt number. 
Finally, I would like to thank all the staff and participants of the 1983 Geophysical 
Fluid Dynamics Summer Program at Woods Hole Oceanographic Institution for 
providing me with such a comfortable and stimulating environment for research. 

Appendix A. Asymptotic wavenumber of the fastest-growing mode for 
large e and/or small G 

small, where a is a positive number, (3.1) gives 
If a is assumed to be proportional to E - ~  or G-" as E becomes large or G becomes 

m2 n2n2 G n- 
l + p  - [,,,-TI 4Em4' 

Thus the growth rate u of the fastest-growing mode is located between 
( 1  +p)[m2/(1 +p)2 -n2]G/4~m4 and (1  +p ) [m2/ (1  +p)2-+n2]G/4~m4 when 
m > ( l + p ) x ,  or between 0 and (l+p)[m2/(1+p)2-$n2]G/4~m4 when 
3(1+p)n < m < ( l + p ) n .  If we introduce s = 4 ( 1 + p ) 3 ~ a / G  and f i  = m / ( l + p ) ,  
(2.30) can be written as [ 1 - - y i  

tan [fi( 1 - fi2s)il = - ~ 

with 0 < s < ( f i2 -$n2) / f i4  for in < f i  < n and (fi2-n2)/fi4 < s < (G2-+n2)/fi4 for 
f i  > n. Equation (A 2) can be solved numerically, and the value of G that maximizes 
s is found to be 2.88, while the corresponding value of s is 0.04719. This gives the 
asymptotic formula for the wavenumber of the fastest-growing mode and the 
corresponding growth rate a : 

m = 2.88(1 +p) .  (A 3) 

0.047 19G 0.047 19R 
441 +,u)~ 4( 1 +p)3 ' 

- a =  - 

Appendix B. Non-hydrostatic case 
In this appendix the case in which the hydrostatic approximation is not used is 

considered. The analytical consideration and the numerical calculations can be done 
in the same manner as described in $3. Therefore the only equations and figures that 
must be modified in this case will be described in the following. Since the smallest 
wavenumber of the fastest-growing mode is realized for p = 0, it may be sufficient 
t o  examine the non-hydrostatic effect for this case. In what follows, the notation A : B 
means that the expression A should be replaced by B when the non-hydrostatic effect 
is considered. 

aw ap a Z w  

az2 at aZ (2.5): -- - -- + g(aT- ps) + EK, -, 

im3G m2cr(a + ern2) 
p = 0, 

( r ~ +  m2) [G+ 62a(a + em2)] "'-[G+ 62a(a+ Emz)] 
(2.19): p"- 
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'. 1.C ma n = l  

FIGURE 14. Same as figure 2, but for the non-hydrostatic case (6 = 1.0) and p = 0. 
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FIGURE 15. Same as figure 9, but  for the non-hydrostatic case (6 = 1.0). 

m3G 
(r+m2)[G+S2a(cr+srn2)]' 

(2.20): L = 

[ m%(a + sm2) 1 4  
G + S2a(a + €m2) ' 

(2.21): k = 

4c , (an + em)2 n2n2 +- (a, +rn2)2  [G+S2a,(a,+em2)l2 G+S2a,(u,+sm2) 4 ' 
- - m6G2 

( 3 . 1 ) :  

figure 2 :  figure 14, 

\4al, m2(G+S2cr2,) ( E  = O ) ,  
(3 .2) :  m2G2 = 

\4em40-,(G+S2em2rZ,) ( B  =+ O ) ,  

+ O W 4 )  (6 * 01, 
R I, 2[1+(1+62)t]m2 

figure 9:  figure 15, 
figure 10: figure 16. 
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PIOWRE 16. Same aa figure 10, but for the non-hydrostatic case (6 = 1.0). 

The growth rate as a function of the wavenumber for the non-hydrostatic case is 
shown by the dotted lines in figures 7 and 8 for S = 1 .O and p = 0. The wavenumber 
and the growth rate of the fastest-growing mode for various combinations of (R, e), 
6 = 1.0 and p = 0 are shown in figures 15 and 16 respectively. It is suggested from 
these figures that non-hydrostatic effects are not significant for the intrusions in RT's 
experiment after the initial disturbances have died down. 
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